• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiao, Jingpin (Jiao, Jingpin.) (学者:焦敬品) | Zhang, Jiawei (Zhang, Jiawei.) | Ren, Yubao (Ren, Yubao.) | Li, Guanghai (Li, Guanghai.) | Wu, Bin (Wu, Bin.) | He, Cunfu (He, Cunfu.)

收录:

EI Scopus SCIE

摘要:

The acoustic detection of pipeline leaks is strongly influenced by the associated interference and noise. In this paper, acoustic emission signals are analyzed using a sparse representation method and the main components associated with the leakage are extracted. Dictionary learning is performed using training samples composed of the leakage signals and noise signals. The measured signal is sparsely decomposed on the composite dictionary, allowing the main leakage components to be estimated. The effects of dictionary dimensionality, redundancy, sparsity constraints, and other parameters on the performance of the sparse representation algorithm are investigated. Finally, the leak location in the pipeline is determined through cross-correlation analysis of the reconstructed acoustic signals. Experimental results show that the proposed sparse representation method effectively improves the signal-to-noise ratio of the acoustic emission signals, and correspondingly improves the accuracy and reliability of pipeline leak location compared with traditional localization methods.

关键词:

Sparse representation Leak location Dictionary learning Acoustic emission Pipeline

作者机构:

  • [ 1 ] [Jiao, Jingpin]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jiawei]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ren, Yubao]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Bin]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 5 ] [He, Cunfu]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Guanghai]China Special Equipment Inspection & Res Inst, Beijing 100013, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

MEASUREMENT

ISSN: 0263-2241

年份: 2023

卷: 216

5 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:456/4985046
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司