• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Zhang, Chenlin (Zhang, Chenlin.) | Wang, Tuo (Wang, Tuo.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳)

收录:

EI Scopus SCIE

摘要:

On the users' interaction graph, neighbors have been widely explored in the embedding function of collaborative filtering to address the sparsity issue. However, the embedding learning models are highly subject to the following pairwise interaction function on interest prediction. We argue that the core of personalized recommendation locates interaction rather than embeddings. Distinct from the sparse pairwise interactions, there are a large amount of inherent non-pairwise signals hidden among neighbors, which are promising for interaction learning. In this work, we explore the active effect of non-pairwise neighbors on the target user-item pair and propose a non-pairwise collaborative filtering (NPCF) model. For a target user-item pair, NPCF mines target-aware CF signals of neighbors by aggregating both pairwise and non-pairwise CF signals of the target for a target-specific interaction embedding. Experiments on three real-world datasets demonstrate that NPCF outperforms the state-of-the-art models for personalized recommendation. It implies NPCF is capable of learning interactions with non-pairwise neighbors.

关键词:

Interaction Collaborative filtering Personalized recommendation User interest

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Chenlin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wang, Tuo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEURAL PROCESSING LETTERS

ISSN: 1370-4621

年份: 2023

期: 6

卷: 55

页码: 7627-7648

3 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:474/4965937
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司