• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Xuan 'ang (Jiang, Xuan 'ang.) | Jin, Liu (Jin, Liu.) (学者:金浏) | Lu, Kai (Lu, Kai.) | Du, Xiuli (Du, Xiuli.)

收录:

Scopus SCIE

摘要:

The target of the current works is to analyze the impact of shear-span ratio on the shear failure of Carbon Fiber Reinforced Polymers (CFRP) wrapped reinforced concrete beams having different depths. Twenty-four simply supported beams with different structure sizes (the maximum beam depth reaching 1200 mm) and distinct Shear span to effective depth ratios of 1.0, 1.5, and 2.0, under the CFRP ratio rho f of 0% and 0.0835% were designed and tested. In the experiment, the shear failure process and failure pattern of beams are presented in detail. The strain distribution of the CFRP sheets is described clearly as well. In addition, the shear contribution of CFRP with different beam sizes, especially large beams, and different shear span to effective depth ratio ratios were evaluated, besides, the calculation formulas of shear capacity in design specifications were analyzed and compared. The tested results indicated that all beams with distinct shear-span ratios exhibit a visible size effect. As the shear span to effective depth ratio increases, the generalized shear strength decreases. In addition, the smaller the shear span to effective depth ratio is, the smaller the shear contribution ratio of CFRP is, manifesting the impact of CFRP in a larger shear-span ratio is not as good as that of a smaller shear-span ratio. Finally, a 3-D Meso-scale finite element model is founded to enhance the understanding of the shear failure mechanical response of CFRP shear-strengthened concrete beams without hooping under the impact of a wide range of shear-span ratio.

关键词:

Shear contribution Size effect Shear span to effective depth ratio Experimental investigation Shear failure CFRP-wrapped beam

作者机构:

  • [ 1 ] [Jiang, Xuan 'ang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Lu, Kai]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING STRUCTURES

ISSN: 0141-0296

年份: 2023

卷: 288

5 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:509/4931235
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司