• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Yu (Xu, Yu.) | Liang, Mu (Liang, Mu.) | Gong, Ziting (Gong, Ziting.)

收录:

EI Scopus

摘要:

The task of crowd counting in computer vision is quite difficult, and a lot of excellent work has emerged recently. Recent research has suggested network algorithms that utilize both shallow feature information and deep information that the network has gathered. However, how to efficiently use these different scales of information is a question worth considering. We propose a multi-scale attention network (MSANet), which consists of a convolution module and a spatial attention module. The feature information of different scales extracted from the middle and deep layers is fused to obtain richer semantic features for crowd counting task detection. At the same time, considering that the fusion of different scale information will introduce some additional background information, we filter the redundant background information by introducing the attention module. Experiments show that this method has achieved good performance improvement on public datasets JHU + + and UCF-QNRF. © 2023 IEEE.

关键词:

Semantics Computer vision

作者机构:

  • [ 1 ] [Xu, Yu]Beijing University of Technology, Beijing, China
  • [ 2 ] [Liang, Mu]Beijing University of Technology, Beijing, China
  • [ 3 ] [Gong, Ziting]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2023

页码: 591-595

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:392/4969597
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司