收录:
摘要:
With ubiquitous adoption of machine learning algorithms in web technologies, such as recommendation system and social network, algorithm fairness has become a trending topic, and it has a great impact on social welfare. Among different fairness definitions, path-specific causal fairness is a widely adopted one with great potentials, as it distinguishes the fair and unfair effects that the sensitive attributes exert on algorithm predictions. Existing methods based on path-specific causal fairness either require graph structure as the prior knowledge or have high complexity in the calculation of path-specific effect. To tackle these challenges, we propose a novel casual graph based fair prediction framework which integrates graph structure learning into fair prediction to ensure that unfair pathways are excluded in the causal graph. Furthermore, we generalize the proposed framework to the scenarios where sensitive attributes can be non-root nodes and affected by other variables, which is commonly observed in real-world applications, such as recommendation system, but hardly addressed by existing works. We provide theoretical analysis on the generalization bound for the proposed fair prediction method, and conduct a series of experiments on real-world datasets to demonstrate that the proposed framework can provide better prediction performance and algorithm fairness trade-off. © 2023 ACM.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
年份: 2023
页码: 3680-3688
语种: 英文
归属院系: