• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Chunjie (Ma, Chunjie.) | Zhuo, Li (Zhuo, Li.) | Li, Jiafeng (Li, Jiafeng.) | Zhang, Yutong (Zhang, Yutong.) | Zhang, Jing (Zhang, Jing.) (学者:张菁)

收录:

EI Scopus SCIE

摘要:

Occluded pedestrian detection is very challenging in computer vision, because the pedestrians are frequently occluded by various obstacles or persons, especially in crowded scenarios. In this article, an occluded pedestrian detection method is proposed under a basic DEtection TRansformer (DETR) framework. Firstly, Dynamic Deformable Convolution (DyDC) and Gaussian Projection Channel Attention (GPCA) mechanism are proposed and embedded into the low layer and high layer of ResNet50 respectively, to improve the representation capability of features. Secondly, Cascade Transformer Decoder (CTD) is proposed, which aims to generate high-score queries, avoiding the influence of low-score queries in the decoder stage, further improving the detection accuracy. The proposed method is verified on three challenging datasets, namely CrowdHuman, WiderPerson, and TJU-DHD-pedestrian. The experimental results show that, compared with the state-of-the-art methods, it can obtain a superior detection performance.

关键词:

Cascade transformer decoder Feature extraction occluded pedestrian detection Object detection Convolution dynamic deformable convolution Task analysis Gaussian project channel attention mechanism Decoding Transformers Kernel

作者机构:

  • [ 1 ] [Ma, Chunjie]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Yutong]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2023

卷: 25

页码: 1529-1537

7 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:471/4953898
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司