• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) | Sun, Chenxuan (Sun, Chenxuan.) | Wu, Xiaolong (Wu, Xiaolong.) | Yang, Hongyan (Yang, Hongyan.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

Covariate shift is a critical issue of interval type-2 fuzzy neural networks (IT2FNNs) due to the distribution discrepancy between training and testing samples. In this situation, IT2FNNs usually struggle to identify potential features from samples with explicit inductive biases. To address this problem, a self-organizing IT2FNN with an adaptive discriminative strategy (ADS-SOIT2FNN) is developed to maintain the identification performance in the presence of covariate shift. First, a granularity-based metric (GM), using higher order statistics of local samples, is designed to distinguish the distribution discrepancy caused by covariate shift. The multiple kernels incorporated into GM are able to cover the sample features of the whole Hilbert space. Second, a self-organizing strategy, associated with GM-based discriminative information, is presented to alleviate the structural bias by growing and pruning fuzzy rules. Then, a compact structure of ADS-SOIT2FNN is achieved to adapt to the covariate shift of samples and further strengthen its inductive ability. Third, an adaptive risk mitigation learning algorithm (RMLA) is introduced to update the parameters of ADS-SOIT2FNN. RMLA can regulate the derivatives of parameters with arbitrary distribution samples, which is beneficial for maintaining the global accuracy by relieving the risk of parameter biases. Finally, the effectiveness of ADS-SOIT2FNN is verified by some experiments for identifying nonlinear systems with covariate shift.

关键词:

interval type-2 fuzzy neural network (IT2FNN) Adaptive discriminative strategy Fuzzy neural networks Testing Firing covariate shift Measurement distribution discrepancy Kernel Training Heuristic algorithms

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Chenxuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Xiaolong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Hongyan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Han, Honggui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 7 ] [Sun, Chenxuan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 8 ] [Wu, Xiaolong]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 9 ] [Yang, Hongyan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 10 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON FUZZY SYSTEMS

ISSN: 1063-6706

年份: 2023

期: 6

卷: 31

页码: 1925-1939

1 1 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:564/4956039
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司