• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Cuicui (Yang, Cuicui.) | Wu, Tongxuan (Wu, Tongxuan.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠)

收录:

EI Scopus SCIE

摘要:

Compared to general multi-objective optimization problems, multimodal multi-objective opti-mization problems (MMOPs) with local Pareto sets (PSs) must determine multiple global and local PSs simultaneously. Therefore, MMOPs with local PSs are challenging. To resolve this is-sue, this study proposes a multimodal multi-objective optimization evolutionary algorithm based on two-stage species conservation (MMOEA/TSC). MMOEA/TSC divides the evolutionary process into two stages: diversity-oriented species conservation and convergence-oriented species conser-vation. The former is aimed at locating promising regions in which global and local PSs may exist. To balance the distribution of solutions, a Gaussian variation strategy is used to iteratively generate diverse offspring in regions that contain the smallest number of solutions. The latter mainly focused on obtaining one PS with good convergence in each promising region. To help the solutions converge to the global and local PSs uniformly, a species stratification strategy was adopted according to the Pareto level of the well-converged solution for each species. The pro-posed algorithm was compared with seven state-of-the-art algorithms. For the CEC 2020 MMOP test problem set, the experimental results show that MMOEA/TSC has the capacity to find global and local PSs.

关键词:

Species conservation Niching Evolutionary algorithm Gaussian variation Multimodal multi-objective optimization

作者机构:

  • [ 1 ] [Yang, Cuicui]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Tongxuan]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 3 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 4 ] [Ji, Junzhong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2023

卷: 639

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:509/5048357
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司