收录:
摘要:
The rapid growth of the civil aviation industry results in significant carbon dioxide (CO2) emissions. Aircraft contribute to the degradation of near-airport air quality during the landing and take-off (LTO) cycle. Several new taxiing methods are used to reduce fuel consumption and emissions of aircraft during the taxiing phase. This study compares various taxiing methods and analyzes the flight operation procedures in different taxiing methods, followed by the local environment impacts assessment of these methods. Based on actual operational data from Xining International Airport, China, comparisons of fuel consumption and pollutant emissions are performed for five taxiing methods: full-engine taxiing, single-engine taxiing, dispatch towing, onboard systems and optimization of surface traffic management. The results show that new taxiing methods can reduce both fuel consumption and pollutant emissions compared to the traditional taxiing method, i.e., full-engine taxiing. Emissions reduction effect of new taxiing methods varies by aircraft type. Onboard systems show the best performance in energy saving and emissions reduction. In addition, the carbon peaking potential of each taxiing method is explored by projecting carbon emissions from 2024-2035 using new taxiing methods. The projections show that new taxiing methods must be combined with other carbon abatement technologies to achieve carbon peaking.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ENERGY
ISSN: 0360-5442
年份: 2023
卷: 227
9 . 0 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:19
归属院系: