• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Zeyu (Shi, Zeyu.) | Chen, Yangzhou (Chen, Yangzhou.) (学者:陈阳舟) | Liu, Jichao (Liu, Jichao.) | Fan, Dechao (Fan, Dechao.) | Liang, Chaoqiang (Liang, Chaoqiang.)

收录:

Scopus SCIE

摘要:

Accurate traffic estimation on urban networks is a prerequisite for efficient traffic detection, congestion warning, and transportation schedule. The current estimation methods can be roughly divided into model-driven and the data-driven methods. The estimation accuracy of the model-driven methods cannot satisfy certain applications. Meanwhile, the data-driven methods have the disadvantages of poor generalization ability and weak interpretability. To overcome these challenges, this paper proposes a framework named the physics-informed spatiotemporal graph convolution neural network (PSTGCN) based on physics-informed deep learning theories. The PSTGCN uses a spatiotemporal graph convolution neural network combined with traffic flow models to estimate the traffic state. The proposed model not only considers the temporal and spatial dependence of traffic flow but also abides by the internal law of traffic flow. Furthermore, the estimation objects of the proposed model are multiple variables that comprehensively represent the traffic state. Experiments on real-world traffic data reveal the error of the PSTGCN is reduced by 38.39% compared to the baselines. Also, the PSTGCN can achieve a similar prediction effect as the baselines by using half of the global spatial information. These results demonstrate that the PSTGCN outperforms the state-of-the-art models in urban traffic estimation and is robust under variable road conditions and data scales.

关键词:

Hybrid model Physics-informed deep learning Urban network Traffic state estimation

作者机构:

  • [ 1 ] [Shi, Zeyu]Beijing Univ Technol, Beijing Key Lab Transportat Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Yangzhou]Beijing Univ Technol, Coll Artificial Intelligence & Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jichao]China Univ Min & Technol, Jiangsu Adv Construction Machinery Innovat Ctr Ltd, 26 Tuoluanshan Rd, Xuzhou 221000, Jiangsu, Peoples R China
  • [ 4 ] [Liu, Jichao]China Univ Min & Technol, Sch Mat Sci & Phys, 1 Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
  • [ 5 ] [Fan, Dechao]Beijing Gen Municipal Engn Design & Res Inst Co Lt, 32 Xizhimen North St, Beijing 100082, Peoples R China
  • [ 6 ] [Liang, Chaoqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS

ISSN: 2473-2907

年份: 2023

期: 7

卷: 149

2 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:306/4971387
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司