• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Yukun (Ma, Yukun.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Li, Zeyu (Li, Zeyu.) | Liu, Fanghao (Liu, Fanghao.)

收录:

EI Scopus SCIE

摘要:

Face presentation attack detection methods based on deep learning have achieved noticeable results. However, such methods tend to over-emphasize a certain local area, which limits their performance against traditional attacks, and makes the system vulnerable to adversarial example attacks. To utilize more information of the input and enhance the robustness of face presentation attack detection methods against adversarial examples, this paper proposes multi-regional convolutional neural networks, and introduces the concept of local classification loss to local patches, so as to utilize the input information in the entire face region and to avoid over-emphasizing certain local areas. Experimental results demonstrate that the proposed method is more robust against adversarial example attacks, and its performance against traditional attacks is also improved compared to existing methods. (c) 2020 Published by Elsevier B.V.

关键词:

Local classification loss Face presentation attack detection Multi-regional convolutional neural networks Adversarial examples

作者机构:

  • [ 1 ] [Ma, Yukun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Zeyu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Yukun]Henan Inst Sci & Technol, Xinxiang 453003, Henan, Peoples R China
  • [ 5 ] [Liu, Fanghao]NYU, Courant Inst Math, New York, NY 10012 USA

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION LETTERS

ISSN: 0167-8655

年份: 2020

卷: 131

页码: 261-267

5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 32

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:327/4509775
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司