• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Feng, Yue-Hong (Feng, Yue-Hong.) | Li, Xin (Li, Xin.) | Mei, Ming (Mei, Ming.) | Wang, Shu (Wang, Shu.) (学者:王术)

收录:

EI Scopus SCIE

摘要:

This paper is concerned with the zero-relaxation limits for periodic smooth solutions of the non-isentropic Euler-Maxwell system in a three-dimensional torus prescribing the well/ill-prepared initial data. The non-isentropic Euler-Maxwell system can be reduced to a quasi-linear symmetric hyperbolic system of one order. By observing a special structure of the non-isentropic Euler-Maxwell system, we are able to decouple the system and develop a technique to achieve the a priori H-S estimates, which guarantees the limit for the non-isentropic Euler-Maxwell system as the relaxation time tau -> 0. We realize that the convergence rate of the temperature is the same as the other unknowns in the L-infinity(0, T-1; H-S), but the convergence rate of the temperature is slower than the velocity in L-2(0, T-1; H-S). The zero-relaxation limit presented here is the transport equation coupled with the drift-diffusion system. However, the limit of the isentropic Euler-Maxwell system is the classical drift-diffusion system. This shows the essential difference between the isentropic and non-isentropic Euler-Maxwell systems.

关键词:

Initial layer problem Zero-relaxation limits The non-isentropic Euler-Maxwell system

作者机构:

  • [ 1 ] [Feng, Yue-Hong]Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
  • [ 2 ] [Wang, Shu]Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100022, Peoples R China
  • [ 3 ] [Li, Xin]Beijing Informat Sci & Technol Univ, Coll Sci, Beijing 100192, Peoples R China
  • [ 4 ] [Mei, Ming]Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
  • [ 5 ] [Feng, Yue-Hong]McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
  • [ 6 ] [Mei, Ming]McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF NONLINEAR SCIENCE

ISSN: 0938-8974

年份: 2023

期: 5

卷: 33

3 . 0 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:493/4931679
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司