• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Lei (Ren, Lei.) | Wang, Tao (Wang, Tao.) | Jia, Zidi (Jia, Zidi.) | Li, Fangyu (Li, Fangyu.) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus SCIE

摘要:

For prognostics and health management of industrial systems, machine remaining useful life (RUL) prediction is an essential task. While deep learning-based methods have achieved great successes in RUL prediction tasks, large-scale neural networks are still difficult to deploy on edge devices owing to the constraints of memory capacity and computing power. In this article, we propose a lightweight and adaptive knowledge distillation (KD) framework to alleviate this problem. First, multiple teacher models are compressed into a student model through KD to improve the industrial prediction accuracy. Second, a dynamic exiting method is studied to enable an adaptive inference on the distilled student model. Finally, we develop a reparameterization scheme to further lessen the student network. Experiments on two turbofan engine degradation datasets and a bearing degradation dataset demonstrate that our method significantly outperforms the state-of-the-art KD methods and enables the distilled model with an adaptive inference ability.

关键词:

Adaptive inference knowledge distillation (KD) reparameterization remaining useful life (RUL) prediction

作者机构:

  • [ 1 ] [Ren, Lei]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 2 ] [Wang, Tao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 3 ] [Jia, Zidi]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 4 ] [Li, Fangyu]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Digital Community, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2023

期: 8

卷: 19

页码: 9060-9070

1 2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 30

ESI高被引论文在榜: 3 展开所有

  • 2024-3
  • 2024-1
  • 2023-11

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:502/4956458
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司