• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Jiahao (Chen, Jiahao.) | Li, Xiuzhi (Li, Xiuzhi.) | Zhang, Xiangyin (Zhang, Xiangyin.)

收录:

EI Scopus SCIE

摘要:

Semantic line is a high-level feature in image segmentation and is of great significance in image understanding. This paper proposes a semantic line detection framework shorten as SLDF in addressing robot guidance or navigation tasks. First of all, this paper cast semantic line detection task as a special object detection task with oriented bounding boxes, and then discusses the diversity between several kinds of label coding categories. There are two alternative backbones provided by SLDF: A two-stage model in pursuit of higher precision, or a single stage model that reaches the best trade-off between speed and accuracy. Besides, a geometry-based loss function is designed for SLDF to exploit the benefits of localization accuracy and brings significant improvement. Finally, considering the lack of a comprehensive line evaluation standard including angle, offset, length and other factors, this paper respectively designs corresponding evaluation function based on the characteristics of frame-independent, frame-dependent and streaming perception model, and then evaluate the performance of our framework on SEL-Dataset, NKL-Dataset. Finally, we migrate the designed model to the agricultural robot and realize the robot guidance task in the farmland.

关键词:

Farmland field navigation Line detection Deep network Semantic line

作者机构:

  • [ 1 ] [Chen, Jiahao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Xiuzhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Xiangyin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Jiahao]Minist Educ, Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Xiuzhi]Minist Educ, Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Xiangyin]Minist Educ, Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SIGNAL PROCESSING-IMAGE COMMUNICATION

ISSN: 0923-5965

年份: 2023

卷: 115

3 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:613/4949170
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司