• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Jiehao (Wu, Jiehao.) | Wang, Xiaojuan (Wang, Xiaojuan.) | Zhou, Hongyuan (Zhou, Hongyuan.) (学者:周宏元) | Chen, Yu (Chen, Yu.) | Du, Xiuli (Du, Xiuli.) | Wang, Yonghui (Wang, Yonghui.) | Zhang, Hong (Zhang, Hong.)

收录:

EI Scopus SCIE

摘要:

Due to the unfavorable blast resistance of reinforced concrete (RC) slabs, particularly with the frequent occurrence of penetration and spalling damage, engineered cementitious composite (ECC) provided a promising alternative for enhanced blast resistance through its direct application as a building material or by reinforcing existing RC slabs due to its excellent tensile ductility and toughness. In the present study, the blast resistance of the RC slab, the ECC slab, and the composite slab (RC slab reinforced by ECC layer) was investigated and compared through experimental and numerical approaches. Firstly, the material properties of the ECC were acquired through the quasi-static compressive test, as well as quasi-static and dynamic tensile tests, which felicitated the parameter calibration in the K & C model for ECC. Then the numerical models of the RC slab, the ECC slab, and the RC/ECC composite slab were established and validated with the blast test results. The test and numerical results showed that the ECC and composite slabs exhibited superior anti-blast performance in terms of failure mode, damage extent, and load mitigation compared to the RC slab. Owing to the remarkable ductility and toughness, the ECC and composite slabs could greatly reduce the possibility and severity of penetration and spalling damage. Furthermore, five significant parameters impacting the blast resistance of ECC and composite slabs were summarized through dimensional analysis including the tensile strength of ECC ������t, the total explosive energy Q, the standoff distance R, the slab thickness H, and the slab span L. Then a dimensionless number was proposed to determine the failure mode and predict the residual deflection at the center of the ECC and composite slabs. The results could serve as a reference for the design of ECC and composite slabs to resist blast loading in the field of structural protection.

关键词:

Dynamic response Near-field blast Dimensional analysis Composite slab Structural protection ECC slab

作者机构:

  • [ 1 ] [Wu, Jiehao]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Xiaojuan]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Hongyuan]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou, Hongyuan]Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
  • [ 6 ] [Zhang, Hong]Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
  • [ 7 ] [Chen, Yu]Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China
  • [ 8 ] [Wang, Yonghui]Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

THIN-WALLED STRUCTURES

ISSN: 0263-8231

年份: 2023

卷: 189

6 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:371/4964927
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司