• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xing, Zhao-Yang (Xing, Zhao-Yang.) | Yang, Xiao-Dong (Yang, Xiao-Dong.) (学者:杨晓东)

收录:

EI Scopus SCIE

摘要:

The vibration control performance of a combined vibration isolation (CVI) system consists of a quasi-zero stiffness (QZS) system and a linear dynamic vibration absorber (DVA) is investigated. Firstly, the dynamic equation is established and the amplitude-frequency response of the CVI system is deduced by the harmonic balance method, and the analytical result is verified by numerical simulation. Secondly, the mechanism of CVI system is revealed from the perspectives of vibration amplitude, energy, and force transmission: The vibration isolation performance of the QZS system can be improved by reducing the vibration amplitude. Thirdly, the control performance of the CVI system is analyzed in terms of the effects of the stiffness, damping, mass ratio of DVA, and the damping of the primary system, as well as the robustness of the system. The findings lead to the development of an explicit tuning rule for the DVA attached to the QZS system. Lastly, a comparison of control performance with other three models is conducted. The results demonstrate that the CVI system can effectively suppress the vibration amplitude and broaden the isolation frequency band. The mechanism and tuning rule for the CVI system presented in this paper provides a useful reference for improving the control performance of the QZS system.

关键词:

Combined vibration control Dynamic vibration absorber Quasi -zero stiffness Nonlinear vibration isolation

作者机构:

  • [ 1 ] [Xing, Zhao-Yang]Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Xiao-Dong]Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES

ISSN: 0020-7403

年份: 2023

卷: 256

7 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 44

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:471/4954995
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司