收录:
摘要:
Variable valve timing (VVT) and Miller cycle are advanced technologies employed to optimize engine performance by improving airflow exchange, which are seldom investigated based on the direct-injection (DI) hydrogen engine. The objective of this study is to assess the effects of intake valve closing (IVC) and exhaust valve opening (EVO) timing on the gas exchange performance, combustion, and emissions of a DI hydrogen engine, after which a synergistic control strategy of IVC and EVO timing is proposed. This work is conducted under wide-open throttle and 1500 rpm. The results indicate that the synergistic control of IVC and EVO timing can increase volumetric efficiency by more than 40%, enhance gas exchange performance, shorten combustion duration, and reduce cyclic variation, resulting in approximately 43.15% brake thermal efficiency. Furthermore, brake mean effective pressure can be increased by more than 60% and NO emissions are controlled to less than 20 ppm by optimizing valve timings.& COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
ISSN: 0360-3199
年份: 2023
期: 53
卷: 48
页码: 20495-20506
7 . 2 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:19
归属院系: