• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Chaoyong (Ma, Chaoyong.) | Yang, Zhiqiang (Yang, Zhiqiang.) | Xu, Yonggang (Xu, Yonggang.) | Hu, Aijun (Hu, Aijun.) | Zhang, Kun (Zhang, Kun.)

收录:

EI Scopus SCIE

摘要:

In the complex background noise, it is difficult to extract the periodic pulse of the rolling bearing fault signal. In this article, a new modal decomposition method supported by the singular value ratio (SVR) spectrum is proposed to find the optimal period of bearing fault data, which can be named periodic detection mode decomposition (PDMD). To detect the intervals of periods and eliminate the interference of useless periods, the initial measurement intervals in this method are divided according to the theoretical fault periods of different fault types of bearings. In each interval, the SVR spectrum is used to detect the appropriate period and suppress the influence of noise on the recognition process. This period is used to construct the optimal Ramanujan subspace (RS). Finally, harmonic spectral kurtosis (HSK) is used to identify the extracted period as false information, interference, or fault. Simulation and experimental data verify the effectiveness of the proposed method. This method can effectively extract and screen periodic pulses and can successfully identify the outer and inner ring faults of bearings.

关键词:

Ramanujan subspace (RS) periodic detection mode decomposition (PDMD) rolling bearing singular value ratio (SVR) spectrum Periodic component (PC)

作者机构:

  • [ 1 ] [Ma, Chaoyong]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Zhiqiang]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Kun]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Yonggang]Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
  • [ 5 ] [Hu, Aijun]North China Elect Power Univ, Dept Mech Engn, Baoding 071003, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE SENSORS JOURNAL

ISSN: 1530-437X

年份: 2023

期: 11

卷: 23

页码: 11806-11814

4 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:435/4950415
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司