• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shen, Jiale (Shen, Jiale.) | Li, Yue (Li, Yue.) (学者:李悦) | Lin, Hui (Lin, Hui.) | Li, Yaqiang (Li, Yaqiang.)

收录:

EI Scopus SCIE

摘要:

This paper developed an autogenous shrinkage prediction tool with high accuracy through machine learning for alkali-activated slag-fly ash geopolymer. The influencing factors of autogenous shrinkage of activated slag-fly ash geopolymer paste and mortar were analyzed. The results show that Extreme Gradient Boosting (XGB) algorithm achieves the best prediction performance with R2 of over 0.90 and strong generalization ability for predicting the autogenous shrinkage of alkaliactivated slag-fly ash geopolymer paste and mortar. The decrease in W/B, alkali dosage and slag content can reduce the autogenous shrinkage of alkali-activated slag-fly ash geopolymer paste, while increasing W/B and decreasing alkali dosage are beneficial to mitigate the autogenous shrinkage of alkali-activated slag-fly ash geopolymer mortar. The Graphical User Interface (GUI) used for autogenous shrinkage prediction of alkali-activated slag-fly ash geopolymer paste or mortar was designed, which can directly be used for predicting autogenous shrinkage on the premise of knowing the synthesis parameters of geopolymer. This prediction tool can prejudge the autogenous shrinkage of alkali-activated slag-fly ash geopolymer materials instead of preforming cumbersome autogenous shrinkage test, which will significantly reduce the workload if we only need to know the autogenous shrinkage.

关键词:

Prediction model Autogenous shrinkage Alkali -activated geopolymer Machine learning

作者机构:

  • [ 1 ] [Shen, Jiale]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yue]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Lin, Hui]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yaqiang]Beijing Forestry Univ, Coll Soil & Water Conservat, Dept Civil Engn, Beijing 100083, Peoples R China
  • [ 5 ] [Li, Yue]Beijing Univ Technol, Coll Architecture & Civil Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF BUILDING ENGINEERING

年份: 2023

卷: 71

6 . 4 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:400/4952969
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司