收录:
摘要:
CO2 photoreduction is warmly embraced as a promising strategy to attain carbon neutrality, with natural photosynthesis constituting a valuable source of inspiration for catalyst design. Herein, an In2O3@ZIF-67 artificial photosynthetic nanoreactor was constructed by growing ZIF-67 on the interior and exterior of MIL-68(In)derived hollow In2O3 prisms via potential nonclassical crystallization pathway(s), forming an efficient double heterostructure with separated reaction centers and prompt electron transfers. With the introduction of [Ru(bpy)(3)](2+) photosensitizer, the nanoreactor possesses two antennae to harvest visible light. Additionally, the macroscopic architecture permits enhanced light and photosensitizer utilization, while ZIF-67 facilitates the capture of CO2. Collectively, the developed nanoreactor exhibits a remarkable CO production rate of 33420 mu mol g(-1)h(-1) with the diminished quantity of the photosensitizer. Moreover, the hydrophobicity of the nanoreactor is found to suppress the side product of H-2 and elevate CO selectivity to 94%, further demonstrating the superiority of its exquisite design.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
年份: 2023
卷: 467
1 5 . 1 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:19
归属院系: