• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Fang, Kuizhen (Fang, Kuizhen.) | Zhang, Dajiang (Zhang, Dajiang.) | Wang, Dongmin (Wang, Dongmin.) | Liu, Ze (Liu, Ze.) | Zhang, Ming (Zhang, Ming.) | Zhang, Shuai (Zhang, Shuai.)

Indexed by:

EI Scopus SCIE

Abstract:

Coal gasification slag (GS) is a potential pozzolanic industrial waste discharged during coal gasification. The study aimed to investigate the effect of finely ground GS powder on the fluidity, rheology and viscoelasticity properties of cement paste, which is essential for utilizing GS as a supplementary cementitious material for building materials. The research revealed that the morphology, physical filling effect, and particle size distribution of GS powder played a vital role in the workability of cement. The particle size distribution of the GS-cement system followed the Rosin-Rammler distribution model, and the width of the particle size distribution negatively correlated with paste fluidity. The rheological characteristics of blended paste transitioned from Bingham to modified Bingham fluid with increased GS powder content, showing shear thinning. Plastic viscosity can predict the fluidity and thixotropy of the paste. GS powder at 10% content broadened the particle size distribution, improved fluidity and rheological properties, with minimal effect on viscoelastic characteristics. With increased GS powder content, plastic viscosity, yield stress, and thixotropy of blended paste increased continuously, resulting in a slow transition from viscosity to elastic solid. Extending mechanical grinding time improved the fineness and activity of GS powder, optimized the particle size distribution, and reduced water demand, minimizing negative effects.

Keyword:

Particle size distribution Cement paste Rheological behavior Viscoelastic properties Coal gasification slag

Author Community:

  • [ 1 ] [Fang, Kuizhen]China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
  • [ 2 ] [Wang, Dongmin]China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
  • [ 3 ] [Liu, Ze]China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
  • [ 4 ] [Zhang, Ming]China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
  • [ 5 ] [Zhang, Shuai]China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
  • [ 6 ] [Zhang, Dajiang]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF BUILDING ENGINEERING

Year: 2023

Volume: 69

6 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 33

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:685/5281746
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.