• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xin (Wang, Xin.) | Yang, Na (Yang, Na.) | Cui, Lingli (Cui, Lingli.)

收录:

CPCI-S EI Scopus

摘要:

A three-stage bearing fault diagnosis method based on compressed data and supervised global-local/nonlocal discriminant analysis (SGLNDA) is proposed. In the first stage, compressed sensing is used to reduce the burden of storage. The compressed data can be obtained from the original vibration signals for subsequent fault diagnosis. In the second stage, a new manifold learning algorithm, namely SGLNDA is used to map the compressed data to low-dimensional space and retain its global and local/nonlocal discrimination information. In the third stage, the low-dimensional features obtained in the previous step are used as inputs of support vector machines to recognize fault diagnosis. The experimental results show that the proposed method can shorten the diagnosis time and obtain high diagnosis accuracy.

关键词:

Feature extraction Compressed sampling Fault diagnosis Manifold learning

作者机构:

  • [ 1 ] [Wang, Xin]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Na]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PROCEEDINGS OF TEPEN 2022

ISSN: 2211-0984

年份: 2023

卷: 129

页码: 1113-1125

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:357/4973061
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司