• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.) | Xu, Kangyuan (Xu, Kangyuan.) | Ma, Haisen (Ma, Haisen.) | Zhou, Mengchu (Zhou, Mengchu.)

收录:

CPCI-S EI Scopus

摘要:

Real-time and precise prediction for traffic of networks is critically important for allocating the optimal computing/network resources based on users' business requirements, analyzing the network performance, and realizing intelligent congestion control and high-accuracy anomaly detection. The dramatic growth of users' applications significantly increases the volume, uncertainty, and complexity of workload, thereby making it highly challenging to precisely predict future network traffic. Temporal Convolutional Networks (TCNs) and Long Short-Term Memory (LSTM) can be effectively used to analyze and predict time series. This work designs an improved prediction approach for the prediction of network traffic, which combines a Savitzky-Golay filter, TCN, and LSTM, called ST-LSTM for short. It first removes the noise of data with the filter of Savitzky-Golay. It then investigates temporal characteristics of data by using TCN. At last, it investigates the long-term dependency in the time series by using LSTM. Experimental results on a real-life website dataset show the prediction accuracy of ST-LSTM is higher than autoregressive integrated moving average, support vector regression, eXtreme Gradient Boosting, backpropagation, TCN, and LSTM, in terms of several commonly used performance indicators.

关键词:

LSTM Savitzky-Golay filter TCNs Cloud computing Time series prediction

作者机构:

  • [ 1 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Kangyuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Haisen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 5 ] [Zhou, Mengchu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022)

年份: 2022

页码: 3865-3870

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:398/5031834
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司