• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cai, Zhi (Cai, Zhi.) | Ji, Meilin (Ji, Meilin.) | Ren, Hongbing (Ren, Hongbing.) | Mi, Qing (Mi, Qing.) | Guo, Limin (Guo, Limin.) | Ding, Zhiming (Ding, Zhiming.) (学者:丁治明)

收录:

CPCI-S EI Scopus

摘要:

With the rapid development of sensing hard-devices, wireless communication technologies and smart mobile devices, a large number of data for moving objects have been collected, among which a group of high precision data (e.g., GPS) are widely used for traffic predictions and management. However, in modern city life, a large volume of positioning data of moving objects is collected with low-precision positions, which causes the difficulty for trajectory match, analysis or group identification. In view of this limitation, this paper proposes a novel method for the semantic trajectory based group identification. Specifically, the trajectory data are used to discover the spatial and semantic information of persons to calculate their similarities. Based on which, the groups of persons with strong correlations are identified. To evaluate our method, we conduct several experiments on Geolife dataset. The experimental results show that the proposed method has a significant effect on the group identification.

关键词:

Clustering analysis Moving object data Groups identification Trajectory

作者机构:

  • [ 1 ] [Cai, Zhi]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Meilin]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Mi, Qing]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Guo, Limin]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 5 ] [Ding, Zhiming]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 6 ] [Ren, Hongbing]Chengdu Microclouds Technol Co Ltd, Chengdu 610000, Peoples R China
  • [ 7 ] [Ding, Zhiming]Chinese Acad Sci, Beijing Key Lab Integrat & Anal Large Scale Strea, Beijing 100144, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2022

ISSN: 0302-9743

年份: 2022

卷: 13614

页码: 264-280

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:554/4953494
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司