• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Rui (Wang, Rui.) | Shi, Yuliang (Shi, Yuliang.)

收录:

CPCI-S EI Scopus

摘要:

With the rapid expansion of the amount of information in social media such as various news and information software, people urgently need to realize the automatic classification of this information to help users quickly find the information they need and filter spam. Aiming at the curse of feature dimension and non-semantic features in traditional text classification models, this paper studies the classification of article text based on the Word2vec model. One of the shortcomings of the Word2vec model is that the essentiality of words in diverse texts is not the same, so this paper introduces the TFIDF model, which can weight Word2vec word vectors to achieve a weighted Word2vec classification model. At last, the weighted Word2vec and TFIDF models are combined.

关键词:

Word2vec Text classification TFIDF LSH

作者机构:

  • [ 1 ] [Wang, Rui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Shi, Yuliang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA)

年份: 2022

页码: 454-457

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:454/5048651
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司