• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zihao (Wang, Zihao.) | Zhang, Yuchen (Zhang, Yuchen.) | Zhao, Yucheng (Zhao, Yucheng.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强)

收录:

CPCI-S EI Scopus

摘要:

Deep learning algorithms for pollen grains classification help monitor airborne pollen grains and forecast the risks of allergic reactions but are dependent on sufficient and balanced image datasets. Pollen grain image datasets are often imbalanced and deficient. This paper provides a series of methods of pollen grain data augmentation by performing feature enhancement/attenuation and staining normalization using unpaired translation. The BPDD-LM dataset was divided into different domains based on staining effects or visual features as inputs to train the model. The output images were evaluated by several metrics and a classification neural network. The results indicated that output images have the desired transformation and can be used to ameliorate the sufficiency and balance of datasets. The methods can be combined to increase the diversity of output and still remain effective for data augmentation.

关键词:

component palynology CycleGAN image processing data augmentation pollen grains deep learning

作者机构:

  • [ 1 ] [Wang, Zihao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhao, Yucheng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Yuchen]Beijing Univ Technol, Beijing Dublin Int Coll, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML)

年份: 2022

页码: 335-339

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:345/4973190
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司