• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Zhenjie (Yao, Zhenjie.) | Yi, Weidong (Yi, Weidong.)

收录:

EI Scopus SCIE

摘要:

Conventional computer vision systems detect object after super-resolution (SR) or image reconstruction of the whole image, which is not an economical manner. By imitating the visual system of human beings, we proposed the bionic vision system (BVS), which is mainly composed by three parts: object detection by visual attention model, object-oriented SR reconstruction and object recognition by convolutional neural networks. The visual attention model contains both bottom-up and top-down cues. The bottom-up cues integrate low-level features by the feature integration theory. An Adaboost detector imitates the top-down cues. Sparse coding and compressed sensing reconstruction realize the object-oriented SR reconstruction. The BVS was validated on license plate recognition task. Both detection performance and SR reconstruction performance are tested. Besides of these, we also test the final recognition rate, all the experimental results are quite encouraging.

关键词:

Super-resolution Visual attention Convolutional neural networks Sparse coding Bionic vision system

作者机构:

  • [ 1 ] [Yao, Zhenjie]Rhinotech LLC., Beijing, Beijing, Peoples R China
  • [ 2 ] [Yao, Zhenjie]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Beijing, Peoples R China
  • [ 3 ] [Yi, Weidong]Univ Chinese Acad Sciences, Sch Elect, Elect, Commun Engn, Beijing, Beijing, Peoples R China

通讯作者信息:

  • [Yao, Zhenjie]Rhinotech LLC., Beijing, Beijing, Peoples R China;;[Yao, Zhenjie]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NATURAL COMPUTING

ISSN: 1567-7818

年份: 2020

期: 1

卷: 19

页码: 199-209

2 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1261/3879414
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司