收录:
摘要:
Hydrogen is a promising clean energy resource. However, the biohydrogen production efficiency needs to be significantly improved to make it competitive to fossil fuels. Formate dehydrogenase, which is a catalyst in the production of 2H+, 2e-, and CO2 from formate, is a critical enzyme in hydrogen production by bacteria. In this study the formate dehydrogenase (fdhF) gene from Bacillus cereus strain XN12 was cloned. The sequencing analysis revealed that the cloned fdhF gene contained 2937base pairs, 39.3% GC content and shared 100% identity with the fdhF gene of Bacillus cereus strain Q1 (genebank No. CP000227.1). To characterize the fdhF gene product of Bacillus cereus strain XN12, the fdhF gene was then subcloned into pET32a and the resulting pET32-FDHF-His plasmid was transformed into Escherichia coli BL21 cells. Through the IPTG induction, the cloned fdhF gene was efficiently overexpressed. The recombinant FdhF protein was highly functional as demonstrated by BV reduction experiment. It was found that the hydrogen production rate of recombinant FdhF protein was greatly influenced by the presence of various metal ions, among which MoO42- and SeO32- increased the hydrogen production mainly by increase recombinant protein expression. The hydrogen production was also higher when glucose used as the substrate than formate used as the substrate. The results suggested that recombinant Bacillus cereus formate dehydrogenase protein was a promising solution for improving biohydrogen production. © 2018, Editorial Board of China Environmental Science. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: