收录:
摘要:
Feature selection has become a vital issue in data mining and machine learning. But some challenges have been outstanding when trying to improve the performance of feature selection, such as small sample, uncertain classes, complex features, complementation and redundancy between each feature. In this paper, firstly the background of feature selection is introduced. Then we have presented a new perspective to analyze multi-label feature selection and provided typical papers on different classifications. To further analyze these algorithms, evaluation criterion on results of multi-label feature selection is summarized. Finally, some reflects on research directions, future works and conclusions are organized. © Published under licence by IOP Publishing Ltd.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ISSN: 1742-6588
年份: 2023
期: 1
卷: 2504
语种: 英文
归属院系: