• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Guangling (Qi, Guangling.) | Zhao, Linna (Zhao, Linna.) | Di, Yuanhang (Di, Yuanhang.)

收录:

EI Scopus

摘要:

Pneumonia diagnosis based on CT scans is crucial for the effective treatment. Existing deep leanring-based methods mainly focus on the global struction of the whole lung organs, while ignore the information of local detailed lesions. This can easily lead to errors in pneumonia decisions and a decline in classification accuracy. Actully, the diagnosis process of specialists in practice involves basically two steps glancing the whole lung organs to capture global information (global view) and gazing at local regions for observing detailed lesion (local view). To mimic this behaviour, we propose a multi-view information fusion network for pneumonia diagnosis from full sequence CTs. First, we design a multi-view information fusion network to extract spatial features from lung CT slices from global and local perspectives. Then, a recursive neural network (RNN) is utilized to solve the problem of dependency between slices and the continuity of lesions. Extensive experiments on real-world datasets are conducted and the results demonstrate the effectiveness of our proposed method. © 2023 IEEE.

关键词:

Classification (of information) Image classification Computerized tomography Deep learning Medical imaging Information fusion Computer aided diagnosis Biological organs Neural networks

作者机构:

  • [ 1 ] [Qi, Guangling]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Zhao, Linna]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Di, Yuanhang]Beijing University of Technology, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2023

页码: 1648-1652

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:563/4953470
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司