• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shunshun (Wang, Shunshun.) | Yan, Changshun (Yan, Changshun.) | Shao, Yong (Shao, Yong.)

收录:

EI Scopus

摘要:

In order to accurately predict the number of traffic accidents and better solve road safety problems, this paper presents a time series prediction model based on an J-LSTM + Attention mechanism, using road traffic accident data and meteorological data from the city of CURITIBA, Brazil, as the research object, and improving the internal gating unit structure of the LSTM model. The traffic accident dataset is fitted and predicted. The results show that the prediction effects of the road traffic accident prediction model based on the J-LSTM + Attention mechanism are all better than those of the classical LSTM model, BP neural network and SVR model, and the overall effect of the model is better, which is of great practical significance for improving road traffic management. © 2023 IEEE.

关键词:

Highway accidents Meteorology Highway administration Motor transportation Long short-term memory Forecasting Roads and streets

作者机构:

  • [ 1 ] [Wang, Shunshun]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Yan, Changshun]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Shao, Yong]Beijing University of Technology, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2023

页码: 635-638

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:326/4954304
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司