收录:
摘要:
Latent heat thermal energy storage (LHTS) plays an important role in the application of renewable energy and recovery waste heat. An LHTS device based on flat micro heat pipe array (FMHPA)-copper foam composite structure is designed which takes porous flat tubes that can attached to FMHPA easily as the heat transit fluid (HTF) pathway, water as HTF, and paraffin wax as phase change material (PCM). The temperature distribution of paraffin, the effect of temperature and volume flow of HTF on charging and discharging power and the charging and discharging efficiency of LHTS device are investigated experimentally. Results show that the temperature distribution of paraffin wax is more uniform by using the FMHPA- copper foam composite structure. Increasing the temperature difference of the HTF and the PCM and increasing the flow rate of HTF both can increase the charging and discharging power. Under the experimental conditions, the maximum charging power is 1.24 kW, the maximum heat discharging power is 1.43 kW. The charging efficiency is 92%, the discharging efficiency is 94%, and the total efficiency is 87.4%. © All Right Reserved.
关键词:
通讯作者信息:
电子邮件地址: