• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Meishan (Liu, Meishan.) | Jian, Meng (Jian, Meng.) | Shi, Ge (Shi, Ge.) | Xiang, Ye (Xiang, Ye.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳)

收录:

CPCI-S EI Scopus

摘要:

Previous works build interest learning via mining deeply on interactions. However, the interactions come incomplete and insufficient to support interest modeling, even bringing severe bias into recommendations. To address the interaction sparsity and the consequent bias challenges, we propose a graph contrastive learning on complementary embedding (GCCE), which introduces negative interests to assist positive interests of interactions for interest modeling. To embed interest, we design a perturbed graph convolution by preventing embedding distribution from bias. Since negative samples are not available in the general scenario of implicit feedback, we elaborate a complementary embedding generation to depict users' negative interests. Finally, we develop a new contrastive task to contrastively learn from the positive and negative interests to promote recommendation. We validate the effectiveness of GCCE on two real datasets, where it outperforms the state-of-the-art models for recommendation.

关键词:

graph neural network user interest contrastive learning Recommender system

作者机构:

  • [ 1 ] [Liu, Meishan]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Jian, Meng]Beijing Univ Technol, Beijing, Peoples R China
  • [ 3 ] [Shi, Ge]Beijing Univ Technol, Beijing, Peoples R China
  • [ 4 ] [Xiang, Ye]Beijing Univ Technol, Beijing, Peoples R China
  • [ 5 ] [Wu, Lifang]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023

年份: 2023

页码: 576-580

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:659/4960411
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司