• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jiafeng (Li, Jiafeng.) | Li, Yaopeng (Li, Yaopeng.) | Zhuo, Li (Zhuo, Li.) | Kuang, Lingyan (Kuang, Lingyan.) | Yu, Tianjian (Yu, Tianjian.)

收录:

EI Scopus SCIE

摘要:

Captured images of outdoor scenes usually exhibit low visibility in cases of severe haze, which interferes with optical imaging and degrades image quality. Most of the existing methods solve the single-image dehazing problem by applying supervised training on paired images; however, in practice, the pairing of real-world images is not viable. Additionally, the processing speed of individual dehazing models is important in practical applications. In this study, a novel unsupervised single image dehazing network (USID-Net) based on disentangled representations without paired training images is explored. Furthermore, considering the trade-off between performance and memory storage, a compact multi-scale feature attention (MFA) module is developed, integrating multi-scale feature representation and attention mechanism to facilitate feature representation. To effectively extract haze information, a mechanism referred to as OctEncoder is designed to include multi-frequency representations that can capture more global information. Extensive experiments show that USID-Net achieves competitive dehazing results and a relatively high processing speed compared to state-of-the-art methods. The source code is available at https://github.com/dehazing/USID-Net.

关键词:

unsupervised learning end-to-end Disentangled representations single image dehazing

作者机构:

  • [ 1 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yaopeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Kuang, Lingyan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, Tianjian]Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Hunan, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2023

卷: 25

页码: 3587-3601

7 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 61

SCOPUS被引频次: 58

ESI高被引论文在榜: 5 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:551/4955756
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司