• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Wang, Chen-Yang (Wang, Chen-Yang.) | Sun, Hao-Yuan (Sun, Hao-Yuan.) | Yang, Hong-Yan (Yang, Hong-Yan.) | Qiao, Jun-Fei (Qiao, Jun-Fei.)

收录:

EI Scopus SCIE

摘要:

Due to the existence of strong nonlinearity and external disturbances, the controller design of complex nonlinear systems is a challenging problem. Therefore, it is necessary to design an effective robust predictive controller for this issue. In this article, based on a fuzzy neural network, an iterative learning model predictive control (FNN-ILMPC) is designed for complex nonlinear systems. First, a dynamic linearization technique is used to establish a data-driven model, which only relies on input and output data. Since the established model contains an unknown disturbance term that may have an impact on the control performance, an FNN is used to evaluate the disturbance so that the uncertainty of the system is captured. Subsequently, based on the above data-driven model, an FNN-ILMPC strategy, considering the impact of external disturbances, is developed to eliminate the influence of disturbances. Then, it is proved that the designed controller can make both modeling error and tracking error decrease gradually and ensure the closed-loop system stability. Finally, the experimental results verify the effectiveness and superiority of the designed controller.

关键词:

fuzzy neural network (FNN) dynamic linearization iterative learning control (ILC) Data-driven

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100021, Peoples R China
  • [ 2 ] [Wang, Chen-Yang]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100021, Peoples R China
  • [ 3 ] [Sun, Hao-Yuan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100021, Peoples R China
  • [ 4 ] [Yang, Hong-Yan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100021, Peoples R China
  • [ 5 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intelligen, Engn Res Ctr Digital Community,Minist Educ,Beijing, Beijing 100021, Peoples R China
  • [ 6 ] [Han, Hong-Gui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100021, Peoples R China
  • [ 7 ] [Wang, Chen-Yang]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100021, Peoples R China
  • [ 8 ] [Sun, Hao-Yuan]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100021, Peoples R China
  • [ 9 ] [Yang, Hong-Yan]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100021, Peoples R China
  • [ 10 ] [Qiao, Jun-Fei]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100021, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON FUZZY SYSTEMS

ISSN: 1063-6706

年份: 2023

期: 9

卷: 31

页码: 3220-3234

1 1 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:544/4966363
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司