• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Song, Bo (Song, Bo.) | Jin, Liu (Jin, Liu.) (学者:金浏) | Zhang, Jiangxing (Zhang, Jiangxing.) | Du, Xiuli (Du, Xiuli.)

收录:

EI Scopus SCIE

摘要:

Basalt Fiber Reinforced Polymer (BFRP) bars appear effective in reducing corrosion-related damage and are gradually used as substitute for Steel bars in engineering practices. However, most of available efforts are focused on the size effect of BFRP-reinforced concrete (BFRP-RC) deep beams without web reinforcement, while less efforts have been studied on BFRP-RC deep beams with web reinforcement. Moreover, the quantitative influence of the shear-span ratio on the shear capacity of BFRP-RC deep beams is always in dispute. The purpose of the work is to investigate the quantitative influence of beam depth and shear-span ratio on the shear behavior of BFRP-RC deep beams with web reinforcement. A total of sixteen specimens were tested by considering the beam depth (i.e., 300 mm similar to 1200 mm) and the shear-span ratio (i.e., 0.8, 1.3 and 1.8) as test variables. Twelve beams were reinforced with BFRP bars while the other four beams were reinforced with steel bars to act as controls. The corresponding size effect of BFRP-RC deep beams with web reinforcement was quantitatively studied, and the applicability of current design codes and scientific calculation methods were discussed. The results indicate that: 1) the increase of shear-span ratio reduces the nominal ultimate shear strength but has an ignorable influence on the size effect; 2) the nominal ultimate shear strength of BFRP-RC deep beams decline by about 46% as the beam depth increases from 300 mm to 1200 mm (both horizontal and vertical web reinforcement ratio are 0.51%); 3) the size effect of FRP-RC deep beams is not reasonably considered in current design codes, while, Jin's theoretical model can scientifically reflect the effect of beam depth and shear-span ratio on the nominal shear strength.

关键词:

Size effect Shear -span ratio Shear strength Large -sized deep beams BFRP bars

作者机构:

  • [ 1 ] [Song, Bo]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 2 ] [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 3 ] [Zhang, Jiangxing]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING STRUCTURES

ISSN: 0141-0296

年份: 2023

卷: 294

5 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:438/4912173
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司