• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Wang, Tuo (Wang, Tuo.) | Zhou, Shenghua (Zhou, Shenghua.) | Lang, Langchen (Lang, Langchen.) | Wu, Lifang (Wu, Lifang.)

收录:

EI Scopus SCIE

摘要:

The conventional uniform embeddings lack diversity to infer users' interests and make suboptimal recommendations for users. Fortunately, users' interactions imply a complex and hybrid composition of users' interests with multiple compatible intents. Therefore, this work strives to investigate fine-grained interest modeling from the diversified composition of interest with the intent hypothesis. We propose a cross-intent transformer embedding (CITE) for personalized recommendation, which extracts collaborative filtering (CF) signals by propagating interests within intent subgraphs and between compatible intents. In the scenario of interaction sparsity, intent-aware interest propagation employs graph convolution to ensure interest consistency in each intent subgraph. It builds intent-aware embeddings with interaction confidences learned iteratively on each intent subgraph. In addition, the transformer evaluates inter-intent compatibility to perform cross-intent interest propagation. It updates intent embeddings with CF signals between intents. The resulting multiple fine-grained intent embeddings model the hybrid composition of users' interests for personalized recommendation. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed CITE and verify the active role of the compatible intents for interest modeling.

关键词:

Collaborative filtering User interest Embedding learning Personalized recommendation

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Tuo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Lang, Langchen]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhou, Shenghua]Xidian Univ, Natl Lab Radar Signal Proc, Xian, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2023

期: 22

卷: 53

页码: 27519-27536

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:569/4966584
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司