• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Wei (Zhang, Wei.) | Ma, Huan (Ma, Huan.) | Wang, Yibo (Wang, Yibo.) | Wang, Yuewu (Wang, Yuewu.)

Indexed by:

EI Scopus SCIE

Abstract:

This paper is the first attempt, to the best of the authors' knowledge, to explore the nonlinear temperature dependent dynamic responses of a porous functionally graded graphene nanoplatelet-reinforced composite (FG-GPLRC) cylindrical panel subjected to a moving distributed load. The desired porous FG-GPLRC structure can be achieved by reasonably designing the inner pore size and GPL dispersion patterns. A temperature dependent dynamic model is proposed by introducing the equivalent thermo-mechanical parameters of the porous FG-GPLRCs with the help of the Halpin-Tsai micromechanics model, extended rule of mixtures, and open cell metal foam model. The nonlinear governing equations of motion of nanocomposite cylindrical panels are derived based on the first-order shear deformation theory and the standard Lagrange equation with the aid of von K ' arm ' an geometric nonlinearity. Additionally, a closed-form Navier-type solution is implemented to model the simply-supported edges of the structures. Finally, the nonlinear dynamic response is determined using the Newmark direct integration technique combined with the Newton-Raphson iterative scheme. A parametric analysis is conducted, and the results indicate that the present model can predicate the temperature-dependent buckling behaviors and transient dynamic responses of the porous FG-GPLRC cylindrical panel. It is also found that dispersing more GPLs and fabricating more internal pores near the mid-surface of the panel can greatly reduce the response amplitudes induced by the moving loads, and the moving distributed load with a shorter length can result in a higher response.

Keyword:

Porous FG-GPLRC Moving load Cylindrical panel Thermal environment Nonlinear dynamic response

Author Community:

  • [ 1 ] [Zhang, Wei]Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Huan]Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Yibo]Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Yuewu]Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Wei]Guangxi Univ, Dept Mech, Nanning 530004, Guangxi, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

THIN-WALLED STRUCTURES

ISSN: 0263-8231

Year: 2023

Volume: 192

6 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 23

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:779/5291717
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.