• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Huihui (Gao, Huihui.) | Huang, Wenjie (Huang, Wenjie.) | Gao, Xuejin (Gao, Xuejin.) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus SCIE

摘要:

Modern industrial processes often exhibit large-scale and nonlinear characteristics. Incipient fault detection for industrial processes is a big challenge because of the faint fault signature. To improve the performance of incipient fault detection for large-scale nonlinear industrial processes, a decentralized adaptively weighted stacked autoencoder (DAWSAE) -based fault detection method is proposed. First, the industrial process is divided into several sub-blocks and local adaptively weighted stacked autoencoder (AWSAE) is established for each sub-block to mine local information and obtain local adaptively weighted feature vectors and residual vectors. Second, the global AWSAE is established for the whole process to mine global information and obtain global adaptively weighted feature vectors and residual vectors. Finally, local statistics and global statistics are constructed based on local and global adaptively weighted feature vectors and residual vectors to detect the sub-blocks and the whole process, respectively. The advantages of proposed method are verified by a numerical example and Tennessee Eastman process (TEP).

关键词:

Stacked autoencoder Industrial processes Local fault detection Incipient fault Adaptively weighting Global fault detection

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Honggui]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Honggui]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Honggui]Beijing Artificial Intelligence Inst, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISA TRANSACTIONS

ISSN: 0019-0578

年份: 2023

卷: 139

页码: 216-228

7 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:622/4948620
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司