• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Ma, Haisen (Ma, Haisen.) | Yuan, Haitao (Yuan, Haitao.) | Zhang, Jia (Zhang, Jia.)

收录:

EI Scopus SCIE

摘要:

Currently, cloud computing service providers face big challenges in predicting large-scale workload and resource usage time series. Due to the difficulty in capturing nonlinear features, traditional forecasting methods usually fail to achieve high prediction performance for resource usage and workload sequences. Besides, there is much noise in original time series of resources and workloads. If these time series are not de-noised by smoothing algorithms, the prediction results can fail to meet the providers' requirements. To do so, this work proposes a hybrid prediction model named VAMBiG that integrates Variational mode decomposition, an Adaptive Savitzky-Golay (SG) filter, a Multi-head attention mechanism, Bidirectional and Grid versions of Long and Short Term Memory (LSTM) networks. VAMBiG adopts a signal decomposition method named variational mode decomposition to decompose complex and non-linear original time series into low-frequency intrinsic mode functions. Then, it adopts an adaptive SG filter as a data pre-processing tool to eliminate noise and extreme points in such functions. Afterwards, it adopts bidirectional and grid LSTM networks to capture bidirectional features and dimension ones, respectively. Finally, it adopts a multi-head attention mechanism to explore importance of different data dimensions. VAMBiG aims to predict resource usage and workloads in highly variable traces in clouds. Extensive experimental results demonstrate that it achieves higher-accuracy prediction than several advanced prediction approaches with datasets from Google and Alibaba cluster traces.

关键词:

Cloud data centers adaptive Savitzky-Golay filter LSTM attention mechanisms deep learning

作者机构:

  • [ 1 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Haisen]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yuan, Haitao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
  • [ 4 ] [Zhang, Jia]Southern Methodist Univ, Lyle Sch Engn, Dept Comp Sci, Dallas, TX 75205 USA

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING

ISSN: 2377-3782

年份: 2023

期: 3

卷: 8

页码: 375-384

3 . 9 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:396/5038214
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司