• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bai, Xuemin (Bai, Xuemin.) | Wang, Yousheng (Wang, Yousheng.) | Dai, Kunjian (Dai, Kunjian.)

收录:

EI Scopus

摘要:

Vector vortex beams (VVBs) are a promising type of structured light that combine the orbital angular momentum (OAM) and the polarization states of light. Due to their intrinsic high dimensionality, VVBs show great advantages in applications like optical communications, information encryption, and quantum information processing. However, the high dimensionality presents a challenge for pattern detection. In this paper, we compare different machine learning-based methods for classifying 270 classes of VVB using basic CNN, MobileNet, and ResNet18 neural networks. We visualize the VVB modes using a color-coding method with Stokes parameters, and the neural networks’ performance is tested in a 1 km free space communication link with four atmospheric turbulence strengths. The results demonstrate that neural networks can recognize large datasets of laser modes with good accuracies, even under turbulence environments. We also propose an image encryption scheme using the VVB dataset to encode an RGB figure which is transmitted through the turbulence channel and successfully recovered by the pre-trained neural networks. Our study highlights the potential of artificial intelligence for VVB pattern recognition and could have a significant impact on the design of future optical communications systems and information encryption protocols. © 2023 Elsevier GmbH

关键词:

Quantum optics Image classification Atmospheric thermodynamics Vortex flow Angular momentum Cryptography Large dataset Machine learning Atmospheric turbulence Polarization

作者机构:

  • [ 1 ] [Bai, Xuemin]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Yousheng]Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Dai, Kunjian]Clemson University, Clemson; SC; 29634, United States

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Optik

ISSN: 0030-4026

年份: 2023

卷: 291

3 . 1 0 0

JCR@2022

ESI学科: PHYSICS;

ESI高被引阀值:17

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:554/4984400
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司