收录:
摘要:
Prediction strategies based on transfer learning have been proved to be effective in solving Dynamic Multi-Objective Optimization Problems (DMOPs). However, slow running speed impedes the development of this method. To address this issue, this paper proposes a transfer learning method based on imbalanced data classification and combines it with a decomposition-based multi-objective optimization algorithm, referred to as ICTr-MOEA/D. This method combines the prediction strategies based on transfer learning with knee points to save computational resources. In order to prevent the prediction accuracy from being affected by the insufficient of knee points, ELM classifier selects more high-quality points from a large number of random solutions. Moreover, SMOTE resolves the class imbalance problem during the ELM training process. The simulation results demonstrate that ICTr-DMOEA shows good competitiveness. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ISSN: 1865-0929
年份: 2023
卷: 1869 CCIS
页码: 428-441
语种: 英文
归属院系: