• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Jiamin (Yu, Jiamin.) | Yang, Cuili (Yang, Cuili.)

收录:

EI Scopus

摘要:

The multiple objective functions or constraints of dynamic multi-objective optimization problems (DMOPs) generally vary over time. The multi-objective evolutionary algorithm based on decomposition (MOEA/D) not only tracks the entire Pareto optimal front (POF) but also has good performance. In effect, a decision maker (DM) is only cared about part of POF in different environments, which is called region of interest (ROI). To solve this problem, preference weight vector adjustment strategy based dynamic MOEA/D (MOEA/D-DPWA) is proposed. Firstly, the reference vector adjustment strategy is put forward to bring in the preference information of DM into DMO. Then, the dynamic response strategy is implemented, which is designed to regenerate the population near to ROI when environmental dynamics change. Finally, experimental results indicate that MOEA/D-DPWA is valid in tackling DMOPs. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

关键词:

Decision making Evolutionary algorithms Vectors Multiobjective optimization Pareto principle Image segmentation

作者机构:

  • [ 1 ] [Yu, Jiamin]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Yang, Cuili]Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1865-0929

年份: 2023

卷: 1869 CCIS

页码: 334-345

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:343/5052342
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司