• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zongli, Jiang (Zongli, Jiang.) | Zhao, Siheng (Zhao, Siheng.)

收录:

EI Scopus

摘要:

The session-based recommendation (SBR) is a task to predict user next action based on anonymous behavior sequences. Most existing studies utilize global context in conjunction with current session information to improve recommendation results. However, the local and global perspectives have an inherent conflict, and it has been a great challenge to integrate the two types of information. In this paper, we propose a novel recommendation method, namely, dual-grained global graph neural network (DG-GNN), to capture collaborative information from all sessions in a more subtle manner to model current user preferences. Specifically, we convert the local and global content into two graphs and process them with the corresponding encoders. The local section exploits the graph attention network to learn a set of item-level embeddings. The global section collects the pairwise item transitions relevant to the current session for constructing graphs and exploits a lightweight encoder to learn a single session-level embedding, which reduces the influence of irrelevant information from global content on the local section. Moreover, a new position embedding mechanism is proposed to generate different position embeddings depending on the length of sessions for enhancing the ability to capture position information. Experiments on real-world datasets demonstrate that DG-GNN outperforms other state-of-the-art methods. © 2023 SPIE.

关键词:

Signal encoding Embeddings Graph neural networks

作者机构:

  • [ 1 ] [Zongli, Jiang]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhao, Siheng]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2023

卷: 12718

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:237/4846587
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司