• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zhuozheng (Wang, Zhuozheng.) | Song, Jingru (Song, Jingru.) | Wang, Yuyang (Wang, Yuyang.) | Liu, Wei (Liu, Wei.)

收录:

EI Scopus

摘要:

Alzheimer's disease (AD) is a neurodegenerative disease that cannot be reversed once it occurs, and there is currently no cure. However, early detection of AD can lead to earlier control of the patient's condition, thus maximizing their quality of life. This study constructed a brain network graph based on the disease characteristics of AD and scalp electroencephalogram (EEG) data, and extracted topological features. These features were then input into machine learning and deep learning models for training, achieving a maximum accuracy rate of 97.27%. This suggests that brain network structures can be used to identify AD, which may help doctors diagnose AD earlier. © 2023 IEEE.

关键词:

Chemical detection Electroencephalography Biomedical signal processing Topology Neurodegenerative diseases Graphic methods Deep learning

作者机构:

  • [ 1 ] [Wang, Zhuozheng]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Song, Jingru]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Wang, Yuyang]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 4 ] [Liu, Wei]Beijing University of Technology, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2023

页码: 294-300

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:208/4846517
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司