• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Na, Weicong (Na, Weicong.) | Bai, Taiqi (Bai, Taiqi.) | Zhang, Wanrong (Zhang, Wanrong.) | Xie, Hongyun (Xie, Hongyun.) | Jin, Dongyue (Jin, Dongyue.)

收录:

EI Scopus

摘要:

This paper presents a multivalued deep neural network (DNN) inverse modeling technique and its applications in high-dimensional microwave modeling for parameter extraction of microwave filters. DNNs with smooth ReLUs have been proven to have significant abilities in dealing with complex design challenges, particularly in high-dimensional microwave forward modeling. However, for inverse modeling, the conventional DNNs with smooth ReLUs face difficulties because they cannot solve the non- uniquenessproblem which is a common and key issue in inverse modeling. In this paper, we propose a high-dimensional inverse modeling technique using multivalued DNN with smooth ReLUs to address the inverse modeling problem with high complexity and non-uniqueness issue. Finally, a more accurate DNN model can be achieved using the proposed technique compared to existing DNN modeling techniques. A high-dimensional inverse modeling example for parameter extraction of a microwave filter is presented to validate the effectiveness of the proposed technique. © 2023 IEEE.

关键词:

Parameter extraction Deep neural networks Microwave filters Extraction Complex networks Inverse problems

作者机构:

  • [ 1 ] [Na, Weicong]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 2 ] [Bai, Taiqi]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 3 ] [Zhang, Wanrong]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 4 ] [Xie, Hongyun]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China
  • [ 5 ] [Jin, Dongyue]Beijing University of Technology, Faculty of Information Technology, Beijing; 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2023

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:500/4950025
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司