• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Zhonghua (Sun, Zhonghua.) | Zhang, Yu (Zhang, Yu.) | Yi, Ziwen (Yi, Ziwen.) | Jia, Kebin (Jia, Kebin.) | Feng, Jinchao (Feng, Jinchao.)

收录:

EI Scopus

摘要:

With the constructing of large volume video dataset and the rapid development of machine vision technology, action recognition in videos has become a hot topic in many applications. The appearance and tempo of human actions is variant in spatial and temporal space. It’s necessary to focus on the detailed descriptions of the fast and slow variations in an action category. We embed the spatial–temporal attention module into the SlowFast networks, to increase the describing ability of fast and slow motion changes. The accuracy of the proposed method is effectively improved on UCF-101 and HMDB-51 datasets. Experiments validate the effectiveness of the networks with embedded spatial–temporal attention module for discriminating variant motion tempos. The proposed method is able to capture more detailed description of action categories from the slow and fast pathways and present a more semantic recognition result. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

关键词:

Large dataset Semantics

作者机构:

  • [ 1 ] [Sun, Zhonghua]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Sun, Zhonghua]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 3 ] [Sun, Zhonghua]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhang, Yu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zhang, Yu]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 6 ] [Zhang, Yu]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Yi, Ziwen]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Yi, Ziwen]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 9 ] [Yi, Ziwen]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 10 ] [Jia, Kebin]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 11 ] [Jia, Kebin]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 12 ] [Jia, Kebin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 13 ] [Feng, Jinchao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 14 ] [Feng, Jinchao]Beijing Laboratory of Advanced Information Networks, Beijing; 100124, China
  • [ 15 ] [Feng, Jinchao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2190-3018

年份: 2023

卷: 341

页码: 169-179

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:498/4956847
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司