• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Yangyang (Chen, Yangyang.) | Chen, Yingyu (Chen, Yingyu.) | Li, Mi (Li, Mi.)

收录:

EI Scopus

摘要:

Depression is a common mental illness characterized by symptoms such as low mood, pessimism, and insomnia. In this study, we developed a deep Dual-Stream CNN to automatically diagnose and classify depression in expression video sequences. The network has two branches that extract static features and dynamic features from static and dynamic expressions, respectively, which are then fused for depression classification. The experiments were performed on the AVEC2014 database, and the results showed that the Dual-Stream model significantly improved the classification performance of depression, achieving an accuracy of 69.08% in depression categorization. © 2023 SPIE.

关键词:

Deep neural networks Convolution Convolutional neural networks Classification (of information) Computer aided diagnosis Diseases

作者机构:

  • [ 1 ] [Chen, Yangyang]Department of Automation, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Chen, Yingyu]Department of Automation, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Mi]Department of Automation, Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Mi]Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing; 100124, China
  • [ 5 ] [Li, Mi]Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education, Beijing; 100124, China
  • [ 6 ] [Li, Mi]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2023

卷: 12754

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:77/4830134
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司