• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

王丹 (王丹.) | 李芳达 (李芳达.) | 许萌 (许萌.)

收录:

incoPat

摘要:

本发明公开一种基于卷积神经网络的肌电信号动作识别方法。针对现有卷积神经网络提取信号图像特征时在多次卷积和下采样后边缘特征易消失,且难以提取表面肌电信号的时序特征的问题,提出了一种样本重构方法和加入了长短时记忆模块的卷积神经网络结构。首先,通过幅值偏斜和白噪声对原始数据做数据增强处理,利用空间填充曲线算法将信号转换为多通道二维图像样本,以模型的增强特征提取能力。在卷积神经网络的基础上,增加长短时记忆模块,进一步提取信号的时序特征。相较于直接使用肌电信号图像作为样本训练的卷积神经网络,本发明提出的方案能够更有效地提升对动作分类的准确性。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202310307594.X

申请日期: 2023-03-28

公开(公告)日: 2023-06-27

公开(公告)号: CN116340824A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:341/5045849
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司