• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Hao-Xiang (He, Hao-Xiang.) (学者:何浩祥) | Wang, Xiao-Bing (Wang, Xiao-Bing.) | Zhang, Xiao-Fu (Zhang, Xiao-Fu.)

收录:

EI Scopus PKU CSCD

摘要:

The traditional metal dampers have the disadvantages such as higher yield point and inadequate adjustability. To overcome these deficiencies, a compound mental damper which comprises the low yield point steel plates and common steel plates is presented. The optimization objectives including 'maximum rigidity' and 'full stress state' are proposed to obtain the optimal shape of compound mental damper. The numerical simulation results show that the compound mental damper has the advantages such as the full hysteresis performance and uniform stress state, and the integral yield point can be regulated. In view of the mechanical characteristic of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. The nonlinear simulation analysis is carried out for the overall aseismic capacity of the frame structures with the compound mental damper. It is verified that the compound mental damper has better energy dissipation capacity and more superior seismic performance, especially for the damper with optimized shape. © 2018, Editorial Department of JVMD. All right reserved.

关键词:

Shape optimization Seismology Energy dissipation Plates (structural components) Yield stress

作者机构:

  • [ 1 ] [He, Hao-Xiang]Beijing Key Lab of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Xiao-Bing]Beijing Key Lab of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhang, Xiao-Fu]Beijing Key Lab of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Vibration, Measurement and Diagnosis

ISSN: 1004-6801

年份: 2018

期: 5

卷: 38

页码: 890-896

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:851/4288363
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司